python数据分析需要哪些库?

Pandas是一个Python库,提供了高级的数据结构和各种分析工具。该库的一大特色是能够将相当复杂的数据操作转换为一两个命令。Pandas提供了很多内置的方法,用于分组、过滤和组合数据,还提供了时间序列功能。所有这些方法的执行速度都很快。4. StatsModels Statsmodels是一个Python模块,为统计数据分析提供了很多...
python数据分析需要哪些库?
1、Numpy
Numpy是Python科学计算的基础包,它提供了很多功能:快速高效的多维数组对象ndarray、用于对数组执行元素级计算以及直接对数组执行数学运算的函数、用于读写硬盘上基于数组的数据集的工具、线性代数运算、傅里叶变换以及随机数生成等。NumPy在数据分析方面还有另外一个主要作用,即作为在算法和库之间传递数据的容器。
2、Pandas
Pandas提供了快速便捷处理结构化数据的大量数据结构和函数。自从2010年出现以来,它助使Python成为强大而高效的数据分析环境。其中用得最多的Pandas对象是DataFrame,它是一个面向列的二维表结构,另一个是Series,一个一维的标签化数组对象。Pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据库灵活的数据处理功能。还提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。
3、matplotlib
matplotlib是最流行的用于绘制图表和其他二维数据可视化的Python库。它最初由John
D.Hunter(JDH)创建,目前由一个庞大的开发团队维护。它非常适合创建出版物上用的图表。虽然还有其他的Python可视化库,但matplotlib应用最为广泛。
4、SciPy
SciPy是一组专门解决科学计算中各种标准问题域的包的集合,它与Numpy结合使用,便形成了一个相当完备和成熟的计算平台,可以处理多种传统的科学计算问题。
5、scikit-learn
2010年诞生以来,scikit-learn成为了Python通用机器学习工具包。它的子模块包括:分类、回归、聚类、降维、选型、预处理等。与pandas、statsmodels和IPython一起,scikit-learn对于Python成为高效数据科学编程语言起到了关键作用。
6、statsmodels
statsmodels是一个统计分析包,起源于斯坦福大学统计学教授,他设计了多种流行于R语言的回归分析模型。Skipper Seabold和Josef
Perktold在2010年正式创建了statsmodels项目,随后汇聚了大量的使用者和贡献者。与scikit-learn比较,statsmodels包含经典统计学和经济计量学的算法。2021-12-15
1. NumPy
一般我们会将科学领域的库作为清单打头,NumPy是该领域的主要软件库之一。它旨在处理大型的多维数组和矩阵,并提供了很多高级的数学函数和方法,因此可以用它来执行各种操作。
2. SciPy

另一个科学计算核心库SciPy,基于NumPy而构建,并扩展了NumPy的功能。SciPy的主要数据结构是多维数组,使用Numpy实现。该库提供了一些用于解决线性代数、概率论、积分计算等任务的工具。
3.Pandas
Pandas是一个Python库,提供了高级的数据结构和各种分析工具。该库的一大特色是能够将相当复杂的数据操作转换为一两个命令。Pandas提供了很多内置的方法,用于分组、过滤和组合数据,还提供了时间序列功能。所有这些方法的执行速度都很快。
4. StatsModels
Statsmodels是一个Python模块,为统计数据分析提供了很多可能性,例如统计模型估计、运行统计测试等。你可以借助它来实现很多机器学习方法,并探索不同的绘图可能性。
5. Matplotlib
Matplotlib是一个用于创建二维图表和图形的低级库。你可以用它来构建各种图表,从直方图和散点图到非笛卡尔坐标图。此外,很多流行的绘图库都为Matplotlib预留了位置,可与Matplotlib结合在一起使用。
6. Seaborn
Seaborn实际上是基于matplotlib库构建的高级API。它为处理图表提供了更恰当的默认选项。此外,它还提供了一组丰富的可视化图库,包括时间序列、联合图和小提琴图等复杂的类型。
7. Plotly
Plotly是一个可以帮助你轻松构建复杂图形的流行库。该库适用于交互式Web应用程序,它提供了很多很棒的可视化效果,包括轮廓图形、三元图和3D图表。
8. Bokeh
Bokeh库使用JavaScript小部件在浏览器中创建交互式和可伸缩的可视化图形。该库提供了多种图形、样式、链接图形式的交互能力、添加小部件、定义回调以及更多有用的功能。
9. Pydot
Pydot是一个用于生成面向复杂图形和非面向复杂图形的库。它作为面向Graphviz的一个接口,使用Python编写。我们可以借助它来显示图形的结构,这在构建神经网络和基于决策树的算法时经常会用到。2021-01-05
python数据分析需要的库有pandas, numpy, matplotlib,可能还需要其他库。2021-01-05
mengvlog 阅读 6 次 更新于 2025-07-18 19:42:08 我来答关注问题0
  • 3.Pandas Pandas是一个Python库,提供了高级的数据结构和各种分析工具。该库的一大特色是能够将相当复杂的数据操作转换为一两个命令。Pandas提供了很多内置的方法,用于分组、过滤和组合数据,还提供了时间序列功能。所有这些方法的执行速度都很快。4. StatsModels Statsmodels是一个Python模块,为统计数据分析...

  •  翡希信息咨询 常用的python库有哪些?

    NumPy:用于进行高效的数值计算,是数据分析的基础库。Pandas:提供高性能、易用的数据结构和数据分析工具。Matplotlib:用于绘制各类静态、动态、交互式的图表。Seaborn:基于Matplotlib,提供更高层次的接口,用于统计图形的绘制。机器学习与深度学习:scikitlearn:提供简单高效的机器学习算法实现。TensorFlow:由...

  • oldboy521 Python数据分析库有哪些

    Python数据分析必备的第三方库:1、Pandas Pandas是Python强大、灵活的数据分析和探索工具,包含Serise、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。Pandas是Python的一个数据分析包,Pandas最初使用用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。

  • 1.Numpy库 是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。2.Pandas库 是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库...

  • 1. NumPy:作为Python的科学计算基础,NumPy提供了高性能的多维数组对象和丰富的数学函数。它特别适合处理大型数组计算,是数据分析和科学计算的核心库。2. Pandas:Pandas为数据结构和数据分析提供了强大的工具。其DataFrame对象是一个二维标签数据结构,类似于Excel表格,非常适合数据清洗和准备。3. Matplotli...

檬味博客在线解答立即免费咨询

Python相关话题

Copyright © 2023 WWW.MENGVLOG.COM - 檬味博客
返回顶部