BrambleXu在GitHub上分享的中文翻译笔记(精华版)是对《利用Python进行数据分析》第二版内容的精心提炼和总结。这份笔记不仅保留了原书的核心知识点和代码示例,还结合作者的理解和实践经验进行了适当的补充和解释。通过这份笔记,读者可以更加快速地掌握Python数据分析的核心技能,并在实际工作中加以应用。图...
利用python进行数据分析 链接: https://pan.baidu.com/s/15VdW4dcuPuIUEPrY3RehtQ ?pwd=3nfn 提取码: 3nfn 本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。
数据分析可以使用Python实现,有足够的Python库来支持数据分析。 Pandas是一个很好的数据分析工具,因为它的工具和结构很容易被用户掌握。对于大数据来说它无疑是一个最合适的选择。即使是在数据科学领域,Python也因为它的“开发人员友好性”而使其他语言相形见绌。一个数据科学家熟悉Python的可能性要比熟...
很棒的社区支持!这是你早年需要的东西。Python2于2000年末发布,已经使用了超过15年。过多的三方库!虽然许多库都提供了3.x支持,但仍然有很多模块只能在2.x版本上工作。如果您计划将Python用于特定的应用程序,比如高度依赖外部模块的web开发,那么使用2.7可能会更好。
3、数据预处理 数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数...