首先,我们需要导入matplotlib.pyplot、numpy库,并从mpl_toolkits.mplot3d中导入Axes3D模块。然后,创建一个figure对象,指定图形的大小为(20,10)。我们可以通过fig.add_subplot()方法在这个图形中创建一个子图来绘制图形。在子图1中:在子图2中:在子图3中:在子图4中:最后,使用plt.show()方法显示...
【Python进阶篇】绘制3D图形|Matplotlib|图解+代码实例
绘制三维图形
在先前章节,我们详细介绍了Matplotlib中的二维图形绘制方法。实际上,Matplotlib同样具备绘制三维图形的能力。为了实现这一功能,我们需要导入mpl_toolkits.mplot.3d.axes3d模块。在创建子图时,需要指定projection为3D。无论是绘制散点图、曲线图,还是添加文字注释,三维图形的绘制方法与二维图形基本一致,唯一的区别是多了一个维度。
code运行结果代码解析
在本例中,我们利用Matplotlib的三维绘图功能,共绘制了四种图形。前两个三维图形的绘制方法与二维绘图方法类似,这里不再赘述。
需要注意的是曲面图与条形图的绘制。在第三个三维曲面图中,meshgrid()函数对x、y进行了映射,将其处理成网格数据,然后才能对z轴坐标进行取样。
绘制三维条形图时,需要关注bar()函数中的参数。三维条形图可以看作是将多组二维条形图放置在同一坐标系下。
具体函数原型为:
其中参数left表示组的宽度,height表示条形图的高度,zs表示二维条形图的组数,zdir指定哪个坐标轴将充当z轴,多个二维条形图沿着该轴方向排列,从而形成三维效果。
首先,我们需要导入matplotlib.pyplot、numpy库,并从mpl_toolkits.mplot3d中导入Axes3D模块。
然后,创建一个figure对象,指定图形的大小为(20,10)。我们可以通过fig.add_subplot()方法在这个图形中创建一个子图来绘制图形。
在子图1中:
在子图2中:
在子图3中:
在子图4中:
最后,使用plt.show()方法显示图形。
至此,关于Matplotlib绘图的知识点讲解完毕。若想深入了解Matplotlib,建议经常查阅官方文档。多看技术API文档,多练习,本教程只是引入,让知识不再遥不可及。
下一期~2024-09-08