如何用pandas分析mysql中的数据

1. 基本使用:创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的sh事情,...
如何用pandas分析mysql中的数据
Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。
1. 基本使用:创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的sh事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。
说了一大堆它的好处,要实际感触还得动手码代码。首要的任务就是创建一个DataFrame,它有几种创建方式:
(1)列表,序列(pandas.Series), numpy.ndarray的字典
二维numpy.ndarray
别的DataFrame
结构化的记录(structured arrays)
(2)其中,二维ndarray创建DataFrame,代码敲得最少:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4))
df
0 1 2 3
0 0.927474 0.127571 1.655908 0.570818
1 -0.425084 -0.382933 0.468073 -0.862898
2 -1.602712 -0.225793 -0.688641 1.167477
3 -1.771992 -0.692575 -0.693494 -1.063697
4 -0.456724 0.371165 1.883742 -0.344189
5 1.024734 0.647224 1.134449 0.266797
6 1.247507 0.114464 2.271932 -0.682767
7 -0.190627 -0.096997 -0.204778 -0.440155
8 -0.471289 -1.025644 -0.741181 -1.707240
9 -0.172242 0.702187 -1.138795 -0.112005
(3)通过describe方法,可以对df中的数据有个大概的了解:
df.describe()
0 1 2 3
count 10.000000 10.000000 10.000000 10.000000
mean -0.189096 -0.046133 0.394722 -0.320786
std 1.027134 0.557420 1.258019 0.837497
min -1.771992 -1.025644 -1.138795 -1.707240
25% -0.467648 -0.343648 -0.692281 -0.817865
50% -0.307856 0.008734 0.131648 -0.392172
75% 0.652545 0.310266 1.525543 0.172096
max 1.247507 0.702187 2.271932 1.167477
2. 改变cell。
3. group by。
4. 读写文件。2017-10-31
mengvlog 阅读 7 次 更新于 2025-07-21 14:51:11 我来答关注问题0
  • 1. 基本使用:创建DataFrame. DataFrame是一张二维的表,大家可以把它想象成一张Excel表单或者Sql表。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的sh事情,...

  • conn = mysql.connector.connect(**config)如果以上代码无报错,说明已成功安装MySQL Connector库并连接到MySQL数据库。步骤二:Python读取MySQL数据表 在Python程序中,我们可以使用pandas库来读取MySQL数据表。import pandas as pd cursor = conn.cursor()cursor.execute(“SELECT * FROM table1R...

  • 二、解决方法 一般来说上面这个问题都是因为mysql数据库版本所导致的,如果确定语句没有错误的话就要更新版本或者将语句的结束符改成别的符号,只要能够让mysql数据库编译器解析到end就可以了。使用delimiter即可更改sql语句结束符,示例如下:delimiter // --更改结束符create procedure course_id_name(in ...

  • 步骤一:安装Python和MySQL 首先需要安装Python和MySQL,在此不再赘述。建议Python版本选择3.6及以上,MySQL版本选择5.7及以上。步骤二:安装相关库 使用CV连接MySQL需要安装Python的两个库:pyodbc和pandas。可以使用以下命令进行安装:pip install pyodbc pip install pandas 步骤三:创建MySQL数据库和数据表...

  •  翡希信息咨询 如何使用python进行数据分析?

    数据分析 数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规划,获取有用的信息,为商业决策提供参考。可以使用Pandas、Maltlab等工具进行专业的数据统计、数据建模等。在这一阶段,首先要清楚数据的结构,结合项目需求来选取模型。常见的数据挖掘模型有...

檬味博客在线解答立即免费咨询

报错相关话题

Copyright © 2023 WWW.MENGVLOG.COM - 檬味博客
返回顶部